If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-28x-21=0
a = 5; b = -28; c = -21;
Δ = b2-4ac
Δ = -282-4·5·(-21)
Δ = 1204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1204}=\sqrt{4*301}=\sqrt{4}*\sqrt{301}=2\sqrt{301}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-2\sqrt{301}}{2*5}=\frac{28-2\sqrt{301}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+2\sqrt{301}}{2*5}=\frac{28+2\sqrt{301}}{10} $
| 9x+22=4x+77 | | -6.2h=14.57 | | (3x-4)(5x+9)=124 | | X^+4x+4=12 | | (3x+12)+(2x-32)=x | | (30-2x)(30-2x)x=0 | | 0.8-x/0.8+x=1.94 | | 0.8+x/0.8-x=1.94 | | 7n^2-65n=-72 | | 3/4y=6-1/3 | | 3t+(-14)=31 | | w+4/5=81/2 | | x∙30=20 | | 25p+8=83 | | 5t+(-7)=8 | | -147=49x | | 3x+20=8x-16 | | x(1/2)-3x(1/3)=3x(1/6)-9 | | 10^x=200 | | 36x^2+85x+10=0 | | (2x+1)=(5x-1) | | 12y3+2y2-24y=0 | | A=180+1.5x/x | | -32+p=28 | | 5/x+2=3/2 | | -(8y+2)-(-7y-4)=-6 | | (3+5)-(x+7)=0 | | 1/4(1-3x)=-2 | | (y2+6y)2+14(y2+6y)+45=0 | | 1.2x-24=x | | (3x+1)-(2x+2)=0 | | 2x+16=40+3x |